
Thomas Jefferson National Accelerator Facility

Clover Miscellany
(Random ramblings)

Bálint Joó, Jefferson Lab
USQCD All Hands 2019, Brookhaven National Lab



Thomas Jefferson National Accelerator Facility

Contents
• (Clover) Gauge Generation
- Multi-Grid in HMC using QUDA

- Old Fashioned Hasenbuschery: rebooted (?)

• (Clover) Propagator calculations with MG-Proto on KNL, SKX, … 
- OpenMP and fine grained parallelism

• Software for the future:
- End of the line for ‘conventional’ clusters? 

- What programming model to use for performance portability? 

- One suggestion to C++ folks: Use Kokkos for on-node parallelism 



Thomas Jefferson National Accelerator Facility

Big Shout Out to all involved!
• Kate Clark, Evan Weinberg, Mathias Wagner  (NVIDIA) for QUDA!!
- Especially Kate also for algorithmic directions, MG support and MG in the gauge generation

• Frank Winter (JLab) for his work on QDP-JIT

• QPhiX collaborators over the years: M. Smelyanskiy (now Facebook), D. Kalamkar 
(Intel) K. Vaidyanathan (Intel), T. Kurth (NERSC),  M. Ueding (U. Bonn), B. 
Kostrzewa (U. Bonn), P. Labus (U. Bonn), C. Urbach (U. Bonn), D. Deb (RENCI)

• Arjun S. Gambhir (now LLNL) for his work on QUDA Multigrid Integration. 

• Boram Yoon (LANL) for his work on the FG Integrator

• OLCF (especially R. Budiardja, J. Hill) for SummitDev & Summit Use

• J. Deslippe, T. Kurth, R. Gerber (NERSC) & NESAP for a nice long visit to NERSC 
to work on Kokkos.



Thomas Jefferson National Accelerator Facility

Multigrid in the HMC 
• We focus on the MG implementation in QUDA hooked into Chroma

• Primary Targets: Titan, Summit, Blue Waters and any other big GPU based system 
we can use

• MG Subspace Management
- Keep Subspace in Chroma Named Object Store (reuse for solves with several masses)

- Still need to recompute coarse operators: this must be fast

- Subspaces lose effectiveness as fields evolve => Refresh when Iteration Threshold reached

- Keep costs of Subspace Refresh low: use fixed number of iterations (rather than residuum)

- Two new tunable parameters: Iteration Threshold & Refresh Iterations

• Numerical Experiments: 64^3x128 lattice (a~0.092fm, mpi ~ 172 MeV)
- Production Isotropic Lattice



Thomas Jefferson National Accelerator Facility

Multigrid Behavior

• Only the lightest 
mass really 
matters — as 
expected. And as 
shown before by 
Meifeng the 
preconditioner 
doesn’t degrade 
much for heavier 
masses

0	

2	

4	

6	

8	

10	

12	

14	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

So
lv
e	
Ti
m
e	
(s
ec
)	

Solve	

Time	In	Solver	:	m=-0.2416	(has3,	lightest)	

X	register		

X	solve	

X	predict	

Y	register	

Y	solve	

Y	predict	

0	

2	

4	

6	

8	

10	

12	

14	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

So
lv
e	
Ti
m
e	
(s
ec
)	

Solve	

Time	in	Solver:	m=-0.2400	(has2,	second	lightest)		

X	register		

X	solve	

X	predict	

Y	register	

Y	solve	

Y	predict	

0	

2	

4	

6	

8	

10	

12	

14	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

So
lv
e	
Ti
m
e	
(s
ec
)	

Solve	

Time	In	Solver:	m=-0.2180	(has0,	heavy	but	not	quite	strange)	

X	register		

X	solve	

X	predict	

Y	register	

Y	solve	

Y	predict	

0	

2	

4	

6	

8	

10	

12	

14	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	

So
lv
e	
Ti
m
e	
(s
ec
)	

Solve	

Time	in	Solver:	m=-0.2320	(has1,	intermediate)	

X	register		

X	solve	

X	predict	

Y	register	

Y	solve	

Y	predict	



Thomas Jefferson National Accelerator Facility

Multigrid Tuning

• Threshold count effectively regulates frequency or refreshes

• Maximum number of refresh iterations controls cost of refreshes
- But the refreshed subspace may not be good enough if too few refresh iterations are used. 

• NB: Until first refresh, subspace is made with wrong mass
- created by 2nd lightest mass in PF refresh of lightest Hasenbusch field, but seemingly not a big deal

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	

Ite
ra
&o

ns
	

Solve	

m=-0.2416,	Threshold	count	=	170	

Threshold=170	m=-0.2416	max	refresh=10	

Threshold=170	m=-0.2416	max	refresh=20	

Threshold=170	m=-0.2416	max	refresh=50	

Threshold=170	m=-0.2416	max_refresh=100	

Threshold=170	m=-0.2416	max_refresh=500	

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	

Ite
ra
&o

ns
	

Solve	

m=-0.2416,	Threshold	Count=72	

Threshold=72	m=-0.2416	
max	refresh=10	

Threshold=72	m=-0.2416	
max	refresh=20	

Threshold=72	m=-0.2416	
max	refresh=50	

Threshold=72	m=-0.2416	
max_refresh=100	

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26	 27	 28	

Ite
ra
&o

ns
	

Solve	

m=-0.2416,	Threshold	Count=50	

Threshold=50	
m=-0.2416	max	
refresh=5	

Threshold=50	
m=-0.2416	max	
refresh=10	



Thomas Jefferson National Accelerator Facility

Multigrid Tuning

• Outer MG iterations insensitive to refresh iterations once refresh iters  > 20 or so

• In terms of time, it is not immediately clear where the point is… 
- For Threshold=170 it is what I expect: there is a nice minimum (fewer iters=>worse space, more iters=> expensive)

- For Threshold=72, we refresh sufficiently often to keep a low iteration count?

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

5	 10	 20	 50	 100	 500	

Ite
ra
&o

ns
	

Max	refresh	itera&ons	

Total	MG	itera&ons	in	has0	(m=-0.2416)	

Threshold=50	
Threshold=72	
Threshold=100	
Threshold=170	

1450	

1500	

1550	

1600	

1650	

1700	

1750	

1800	

1850	

5	 10	 20	 50	 100	 500	

W
al
lc
lo
ck
	T
im

e	
(s
ec
)	

Max.	Refresh	Itera8ons	

Threshold=50	
Threshold=72	
Threshold=100	
Threshold=170	

NB: No FG 
yet at this 

point

NB: No FG 
yet at this 

point



Thomas Jefferson National Accelerator Facility

Force Gradient Integrator 
• Standard 4th order integrator following 

Omelyan requires 5 force evaluations 
per step (4MN5FV version)

• Omelyan 2nd order intergrator requires 3 
force evaluations per step

• Force gradient integrator (Clark, 
Kennedy, Silva) following H. Yin and 
Mawhinney’s exponential trick needs 3 
force evaluations + 1 auxiliary force 
gradient evaluation, but is 4th order

- Saves on solves compared to 4MN5FV 

- 4th order so volume scaling of cost is V9/8.

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8
log(dt)

-4

-3

-2

-1

0

1

lo
g(

 | 
dH

 | 
)

Scaling of dH with dt in a  FG Integrator (impl. by B. Yoon followin H. Yin) V=8x8x8x8, Wilson Gauge

Gradient = 4.0304



Thomas Jefferson National Accelerator Facility

Summit Dev Gains.

• 4.25x wallclock speedup on SummitDev

• On Titan, after all algorithmic optimizations on 512 nodes: ~974 sec per traj

• On Titan  on 256 nodes: ~1hour 
- superlinear slowdown: suspect node-device traffic from QDP-JIT cache

0	
500	

1000	
1500	
2000	
2500	
3000	
3500	
4000	
4500	
5000	

Original	Titan	1024	K20X	 Original	SummitDev	 MD	Retune	Omelyan	
(SummitDev)	

MD	Retune	+	MG	
(SummitDev)	

MD	Retune	+	Force	
Gradient	+	MG	
(SummitDev)	

W
al
lc
lo
ck
	T
im

e	
fo
r	T

ra
je
ct
or
y	
(s
ec
)	

Wallclock	Time		vs.	Tunings	

4.26x 
wallclock 
speedup

Hardware
MD

MG
FG



Thomas Jefferson National Accelerator Facility

Summit Gains

• Combined Hardware x Algorithm & MD Retuning Walltime gain: 9.12x

• 8x reduction in GPUs: Integrated gain: 73x. (Contribution to 2018 ECP FOM)

• Updated: more QUDA optimizations (reduced prec chrono vecs etc.): 392.6 sec
- 10.2x walltime  x  8-fold GPU reduction => 81.6x (Contribution to 2019 ECP FOM)

4006	

1878	

974	

439	

0	
500	
1000	
1500	
2000	
2500	
3000	
3500	
4000	
4500	

Titan	(1024	K20X)	 Summit	(128	V100)	 Titan	(512	K20X)	 Summit	(128	V100)	

Original	 Improved	

W
al
lc
lo
ck
	T
im

e	
fo
r	B

en
ch
m
ar
k	
	

(s
ec
on

ds
)	

H/w: 
2.13x

Alg & MD 
4.28x

Total walltime: 9.12x 

SciDAC  
Highlight 
In 2018!

Can We Get 
To 100x ?



Thomas Jefferson National Accelerator Facility

Hasenbuschery Rebooted (?)
• Work in Progress (K. Clark, B. Joo, W. Sun)

• Observations from current runs:
- Ratio terms are on same time-scale, MG Iterations weakly sensitive to mass

• Kate: Use a multi-Hasenbusch Term !!
- Hasenbusch with twisted mass, Krylov subspaces for twists are related

- Add nonzero µ1 & accept/reject without or reweight => tame ΔH spikes (?)

- Multi-RHS Solver (different twist each right hand side)

- Increase Gauge Reuse & More Comms B/W bound, Better scaling(?)

• Current status:
- Chroma side: multi-RHS solver interface and multi-Hasenbusch Monomial written

- SRHS Prec. Clover op with twisted mass written in QUDA using new Dslash infrastructure.

- SRHS MG for twisted operator in QUDA (not same as regular TWM) needs sorted out next

- Once that is all working move to multi-RHS pseudo block solver 

det(M2
1 )

det(M2
2 )

⇥ det(M2
2 )

det(M2
3 )

. . .

det(M2
1 + µ2

1)

det(M2
1 + µ2

2)

det(M2
1 + µ2

2)

det(M2
1 + µ2

3)
. . .



Thomas Jefferson National Accelerator Facility

MG Proto: Props on Intel Xeon & KNL 
• QUDA MG Available since 2016

• Needed MG Capability on KNL and X86

• I wanted to learn about what goes into an MG 
Implementation - use experience gained on GPUs

• Result: MG Proto (prototype MG library)
- Use QPhiX on Fine Level (efficient AVX,AVX2,AVX512)

- Vectorize Coarse Mat-Vec ops. In Coarse Op. 

- Investigate threading of coarse op (e.g. fine grained)

• Fine grained threading doesn’t seem to work well 
with OpenMP - IXPUG 18 paper with T. Kurth

- Performance not embarrassing…

- Production use at NERSC, JLab, Meltemi, Stampede2 



Thomas Jefferson National Accelerator Facility

Nested Parallelism in Restrictor
• Restrictor has several sources of 

parallelism
- Outer (coarse-site/block) parallelism

- Inner Parallel reduction (inner product)

- SIMD (e.g. over null-vectors)

• Explicit intrinsic based SIMD in 
reductions needed OMP-4 custom 
reduction

• Various approaches to parallelizing 
inner matvecs

- OMP nested parallelism 

- Manually managed (via thread ID)



Thomas Jefferson National Accelerator Facility

KNL Thread Scaling Results
• Explicit nested 

(exp) OpenMP 
was always worse 
than manually 
(man) managed 
nesting.

• “Inner” threads 
only helped on the 
smallest blocks  
(2-4 inner threads)

• On smallest 
blocks, serial 
reductions worked 
better than 
parallelized ones

2 4 6 8 10 12 14 16
#inner threads

0
25
50
75

100
125
150
175

GF
LO

P/
s

V=4x4x4x4, 24, man. ser. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

50

100

150

200

250

GF
LO

P/
s

V=4x4x4x8, 24, man. ser. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
50

100
150
200
250
300
350
400

GF
LO

P/
s

V=4x4x8x8, 24, man. ser. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

100

200

300

400

GF
LO

P/
s

V=4x8x8x8, 24, man. ser. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
25
50
75

100
125
150
175

GF
LO

P/
s

V=4x4x4x4, 24, man. par. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

50

100

150

200

250

GF
LO

P/
s

V=4x4x4x8, 24, man. par. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
50

100
150
200
250
300
350
400

GF
LO

P/
s

V=4x4x8x8, 24, man. par. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

100

200

300

400

GF
LO

P/
s

V=4x8x8x8, 24, man. par. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
25
50
75

100
125
150
175

GF
LO

P/
s

V=4x4x4x4, 24, exp. cust. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

50

100

150

200

250

GF
LO

P/
s

V=4x4x4x8, 24, exp. cust. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0
50

100
150
200
250
300
350
400

GF
LO

P/
s

V=4x4x8x8, 24, exp. cust. red.
16 threads
32 threads
64 threads
128 threads
256 threads

2 4 6 8 10 12 14 16
#inner threads

0

100

200

300

400

GF
LO

P/
s

V=4x8x8x8, 24, exp. cust. red.
16 threads
32 threads
64 threads
128 threads
256 threads

Figure from IXPUG ISC talk by T. Kurth (NERSC)



Thomas Jefferson National Accelerator Facility

MG Scaling on Stampede2 SKX nodes

0 64 128 192 256 320 384 448 512
Cray XK (Titan) Nodes

0

10

20

30

40

50

W
al

lc
lo

ck
 T

im
e 

(s
ec

)

QUDA BiCGStab
QUDA Adaptive MG

V=643x128 sites, m
π
 ~ 200 MeV

10x reduction 
in wall-clock time

172

Stampede2 SKX

OLCF Titan (K20X)  
(QUDA)

• Stampede SKX performance appears comparable to an OLCF Titan NVIDIA K20X node
- Fine print: the Titan result was from our SC’16 paper, QUDA performance will have improved since then  



Thomas Jefferson National Accelerator Facility

MG Speedup on SKL

• Compared to the Mixed 
precision BiCGStab, the 
speedup is around 8x.

• Similar speed to what we 
observed on Titan…



Thomas Jefferson National Accelerator Facility

Programming for the Future

• Very few new ‘conventional clusters’ out there…
- Frontera at TACC in the U.S. (Xeon Server)?

• Essentially all leadership systems have some form of highly parallel processor
- Either KNL, or NVIDIA GPU currently.

- This trend will likely continue into the future: Perlmutter, Aurora, Frontier, … 

• Not being able to use Accelerators in your code is a serious handicap

• Not being able to move your code to new hardware can be a disadvantage
- Worth some amount of strategic planning

• My recommendation: Try Kokkos!



Thomas Jefferson National Accelerator Facility

Kokkos Main Features
• Kokkos is an on-node programming model providing 
- Parallel Execution Patterns:    parallel for, reduction, scan 

- Parallel Kernels encoded as C++ Functors or C++ Lambdas

- Separate Execution Spaces (Backends): Host, OpenMP, CUDA, …

- Separate Memory Spaces: Host, Device, UVM, …

- Views (multi-dimensional array) to control index order using policies

• Currently best supported: CUDA  and OpenMP

• Aurora Support is scheduled for CY20

• Kokkos team members are on C++ standard committee

• I found Kokkos quite useable — modulo vectorizing complex arithmetic on CPUs

• Could be a good option for accelerating Analysis/Contraction codes…



Thomas Jefferson National Accelerator Facility

Kokkos Performance Summary
• SRHS Dslash Case:

- Kokkos Vectorized Dslash with AVX512 and tuned 
blocking matches QPhiX on Cori KNL node (68 
cores, 272 threads)

- Unvectorized & No AVX cases are slow

- Kokkos Naive CUDA version is 72% of QUDA on P100 
(SummitDev)

- Vectorized (but V=1) QUDA version benefits from 
block tuning, memory & locality optimizations and 
md_parallel_for: 79% of QUDA on P100 
(SummitDev)

• MRHS Dslash Case: 
- Kokkos With AVX512 exceeds corresp. QPhiX 

SRHS performance on Cori KNL node for 8 RHS

- Kokkos Without AVX512 is very slow

- Kokkos CUDA version is 86% of QUDA for 16 RHS 
on SummitDev (P100)

563	

614	

782	

132	

79	

27	

442	

441	

0	 100	 200	 300	 400	 500	 600	 700	 800	 900	

Kokkos	Naïve	

Kokkos	Vector	(V=1)	

QUDA	

cpp_wilson_dslash	(SSE)	

Kokkos	Naïve		

Kokkos	Vector	(V=8,	No		AVX512)	

Kokkos	Vector	(V=8,	with	AVX512)	

QPhiX	(SOA=8)	

P1
00
	

KN
L	

SR
HS

	

GFLOPS	

1,213	

1,409	

38	

468	

428	

0	 200	 400	 600	 800	 1000	 1200	 1400	 1600	

Kokkos	(V=16)	

QUDA	(V=16)	

Kokkos	No	AVX512	(V=8)	

Kokkos	With	AVX512	(V=8)	

QPhiX	(SOA=8,SRHS)	

P1
00
	

KN
L	

M
RH

S	
GFLOPS	

Vol=32x32x32x32 sites

Vol=16x16x16x32 sites



Thomas Jefferson National Accelerator Facility

Summary
• Multigrid is in the mainstream in the Clover world:
- Super efficient GPU implementation and a not-embarrasingly efficient x86 version available

- MG has now been incorporated into gauge generation in production and is a big boost to 
the USQCD ECP FOM.

- MG proto is in production use now on KNL and SKX system (NERSC, TACC, JLab, W&M)

- MG proto is a good starting point for performance portability tests (Kokkos, OpenMP, …) 

• Multi-Hasenbusch should hopefully improve Gauge Generation further
- More efficient solvers using multi-RHS approaches 

- Stabilize Delta-H spikes in MD with auxiliary twisted masses

• I still think Kokkos could be a good place to start writing performance portable 
code, especially for new/analysis codes which do not leverage other current 
performance portability approaches (ie. Not written in Grid, or QDP-JIT,  etc.)



Thomas Jefferson National Accelerator Facility

Acknowledgements
• Once again, I’d like to acknowledge everyone who has worked and continues to 

work with me on these projects (See Slide 1)

• I’d like to acknowledge funding from US DoE Office of Nuclear Physics, Office of 
High Energy Physics and  the Office of Advanced Scientific Computing Research 
through the SciDAC Programe (1,2,3, and 4) and from the Exascale Computing 
Project

• I’d like to acknowledge all the Computer Systems used for this work at
- NERSC (Edison, Cori), ALCF (Theta), OLCF (Titan, Summit, SummitDev), TACC 

(Stampede 2), NCSA (Blue Waters), and of course clusters at Jefferson Lab (16p,18p, 12k, 
14g).


